Prediction Algorithms for Cell Therapy Collections

Joseph M. Roig, MS WAA Meeting, Paris, April 28, 2016

What kind of prediction algorithms are we talking about?

Mathematical expressions that allow for the calculation of the **whole blood volume** to process to collect a desired cell yield based on the corresponding **cell pre-count**

Prediction Algorithms

Simple

- Based on average Cell CE2%
- Empirical
- Complex (statistically calculated)
 - Based on a linear regression

But how many cells went through the device?

Collection
Efficiency CD34CE254.3%CE166.7%Actual89.1%

Borrowed from Richard Smith, Sr. Scientist @ Terumo BCT

Collection Efficiency 1 (CE1)

 It is based on the *average* cell count during the procedure, (pre + post / 2), therefore it requires a cell *post* count. It cannot be used to build a prediction algorithm (*Cousins AF et al, JCA 2015*).

- CE1 is closer to the Actual CE as it assumes correctly that the concentration of CD34+ in peripheral blood is *not* constant.
- CE1 compensates for intra-procedure CD34+ mobilization.
- In general, CE1 > CE2.
- CE1 is not significantly influenced by WB volume processed

Collection Efficiency 2 (CE2)

Based on cell pre-count *only*. It can be used for prediction purposes. It is the most commonly calculated:

CE2 = Total Cells collected WB Volume x Cell pre-

• Since it wrongly assumes that cell concentration in peripheral blood is constant throughout the procedure, CE2 is not close to the actual CE.

• In general, CE2 < CE1

• The more blood is processed, the lower the CE2 (the assumption about cells going through the apheresis device gets worse)

Dependency of CE2 on WB processed

CE% is device-dependent and institution-dependent

Institution	Device 1	Device 2
1	55%	39%
2	52.7%	46.2%
3	54.2%	48.7%
4	66%	60%
5	42%	35.1%
6	38.3%	27.4%
7	55.5%	38.3%
8	56%	43%
9	56.4%	38.7%
10	67.8%	58.0%
11	55%	46%

Simple prediction algorithm Based on CE2%

Fine tuning a simple algorithm

To ensure that we get the desired yield most of the times

WB volume = Desired Cell yield / (Cell pre- x CE%)

• If we use the mean CE% we will fail 50% of the times

• If we use a "pessimistic" CE% we will not fail *most* of the times, but we may over-collect. (Rosenbaum ER, Cytotherapy 2012)

Stastistically calculated prediction algorithm

- We need to find a *good* correlation between cells collected and cell pre-count
- But cell yield also depends on WB volume processed, so...
- We need to find a correlation between normalized yield (per liter of WB processed) and cell pre-count

Statistically calculated Prediction Algorithm Based on a linear regression – Example

-	$\overline{\Lambda}$					$\langle \rangle$			
	Pre- CD34+/	γµI	Ł	WB rocessed	Product Volume	Product HCT	Total CD34+	CD34+ CE%	CD34+) Lit WB
	87			27290	339	2.9	1.4E+09	51.9%	5.2E+07
I	52			21223	454	5.2	5.7E+08	49.9%	2.7E+07
	24			13418	365	0	1.6E+08	49.1%	1.2E+07
	40			15359	343	1.2	3.0E+08	45.7%	2.0E+07
	4			17738	350	4.2	2.9E+07	62.4%	1.6E+06
	9			22151	370	1.5	1.3E+08	70.4%	5.8E+06
	10			22006	389	2	1.5E+08	76.0%	7.0E+06
L	46			17954	328	3.9	6.3E+08	33.0%	3.5E+07
	21			14552	183	0.8	9.8E+07	57.1%	6.8E+06
	13			13902	196	0.7	9.9E+07	51.8%	7.1E+06
	34			11050	200	0.8	1.9E+08	73.6%	1.7E+07
	20			18673	564	1.6	2.8E+08	66.9%	1.5E+07
	19			20099	418	1.2	2.5E+08	61.2%	1.2E+07
l	41			22603	514	0.8	5.7E+08	39.2%	2.5E+07
	42			12607	160	1.3	2.1E+08	65.3%	1.7E+07
	54			20201	436	1.3	7.1E+08	43.0%	3.5E+07
	45			12741	500	1.3	2.5E+08	57.2%	1.9E+07
	40			12829	410	2.1	2.9E+08	38.1%	2.3E+07
I	36.6			7846	368	1.3	2.5E+08	54.5%	17E+07

- Divide total CD34+ collected by liters of WB to
- 2. Obtain the CD34+ collected per liter of WB (normalized) and
- Plot CD34+/ liter WB against pre-CD34+ (see next slide)

Statistically calculated Prediction Algorithm Can our past help us predict our future?

Statistically calculated Prediction Algorithm

Linear regression	y = 0.4485 x + 1.0349	copied from previous chart	
	Target CD34+/Kg	5	
	Kg recipient	75	
	CD34+ pre-count	50	
	WB liters to process	16.0	

- What the linear regression expression means is, actually: CD34+/Liter WB = 0.4485 x CD34+ pre-count + 1.0349
- Which we can easily turn into:

Liters WB = Target CD34+/Kg x Kg recipient

(0.4485 x CD34+ pre + 1.0349)

Two devices can be analyzed simultaneously

 The most efficient device will require you to process less blood to get the same cell yield

Reasons why we all should consider using prediction algorithms

- Collection procedures can be shortened whenever cell pre-counts are average or higher
 - This may improve platelet loss and cross-cellular contamination (less RBC, granulocytes in product)
 - Product volumes will be smaller
 - Over-collecting is not free: consider the cost of freezing and storing the excess of cells (\$65 to \$100 per bag per year) (Paolo Perseghin, 2016 WAA Meeting, Paris)
 - Most adverse effects happen at the end of long collection procedures (John Miller MD, NMDP – Be The Match Meeting, 2014)
- If pre-counts are borderline low, the need for additional collections can be confirmed beforehand

Actual results when using a prediction algorithm

Michigan Blood, Grand Rapids, MI

				Spectr	а			Optia						
Year	WB liters	n	Coll. Time	Spectra CD34+ Requested x10 ⁶	Spectra CD34+ Collected x10 ⁶	Second procedure (per year)	Procedures per donor	WB liters	n	Coll. Time	Optia CD34+ Requested x10 ⁶	Optia CD34+ Collected x10 ⁶	Second procedure (per year)	Procedures per donor
2009	15.7	39	6:40	406	492	3	1.08	na	na	na			na	na
2010	14.7	47	6:58	404	503	3	1.06	na	na	na			na	na
2011	15.6	<mark>49</mark>	5:50	449	449	4	1.08	na	na	na			na	na
2012	18.3	46	5:36	445	<mark>493</mark>	0	1.00	16.1	4	4:47	395	645	0	1.00
2013	13.3	26	4:35	468	419	6	1.23	15.7	39	<mark>6:10</mark>	474	532	1	1.03
2014	14.8	10	4:06	393	581	1	1.10	14.9	26	4:43	445	615	0	1.00

THANK YOU!

0